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Abstract This study pertains to analysing the dynamical behaviour of a floating body undergoing parametric
resonances. A simple vertical cylinder, representing a classical spar-buoy, is considered, limiting its motion
to heave and pitch degrees of freedom. Its geometry and mass distribution are chosen such that a 2:1 ratio of
heave to pitch/roll natural frequency makes the spar-buoy prone to parametric resonance. The system is then
studied by the shooting method, combined with a pseudo-arclength continuation, and the harmonic balance
procedure. Results show that an extensive bistable region exists, where stable parametric resonance coexists
with a regular resonance response. The analysis also unveiled the existence of stable quasiperiodic motions
existing in correspondence of both pitch and heave resonance. Results are qualitatively validated using a model
based on the explicit nonlinear Froude–Krylov force calculation.

1 Introduction

Parametric pitch and roll motions can occur in a floating body due to the time variation of the hydrostatic
restoring torque coefficients, as wave–structure interaction causes the body submergence level to oscillate. This
phenomenon was first documented by Froude in the nineteenth century [9] and has since been observed and
studied in a wide range of naval and offshore structures such as ships [28,35,40], spar-buoys [12,22,23,32],
floating platforms [37,38,43], and marine renewable energy devices [5,39]. The occurrence of parametric
resonance in these structures can pose significant safety risks and performance degradation. For example,
container ships lost cargo overboard due to large parametric roll motions [8] and wave energy converters
incurring reductions in power output [2,3,17].

As such, methods for suppression and stabilization of parametric pitch/roll in ships have been investigated,
see for example [10,11,19,41] and the references therein. A key requirement is the ability to predict the
occurrence of parametric resonance, a task that relies heavily on numerical modelling and analysis. While a
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rich catalog of effective methods exists within the field of nonlinear dynamics for modelling and analysing
parametric resonance, relatively few of these methods have been applied to the study of parametric resonance
in offshore vessels and structures. In this work, we adopt numerical techniques common in the nonlinear
dynamics scientific community but rarely implemented in ocean engineering, aiming at revealing dynamical
phenomena hidden in the complex structure of parametric resonances that these kinds of systems experience.

1.1 Test case

The floating body used in this study is a simple vertical cylinder, representing a classic spar-buoy, whose
particular geometry and mass distribution follow a widely used test case from the literature [4,12,13,20,24–
27,34,44]. This test case spar-buoy is popular for studies involving parametric resonance, since it has a pitch/roll
natural frequency (ω5 = 0.108 rad/s) which is approximately half the heave natural frequency (ω3 =0.216 rad/s).
The 2:1 ratio of heave to pitch/roll natural frequency makes this spar-buoy prone to parametric excitation in
pitch/roll.

Hong et al. [44] performed physical experiments of the spar-buoy at model scale, considering free decay
and regular wave inputs. Several studies then utilize the information from Hong et al. in the development
of numerical models of the spar-buoy, which are then used to examine the combination resonance response
in Jingrui et al. [20], for the study of nonlinear vibration modes and instability in Gavasoni et al. [12], to
evaluate the nonlinear dynamical behaviour of the spar in Liu et al. [27], to explore parametric resonance
considering wave and vortex exciting loads in Li et al. [24–26], to highlight the existence of yaw instability
when considering nonlinear kinematics within the numerical model in Giorgi et al. [13], and as a test case for
a real-time detection system of parametric resonance in Davidson and Kalmár-Nagy [4].

1.2 Outline and objective of the paper

The objective of this study is to analyse the system’s response in correspondence with the generation of
parametric resonances. In particular, we aim to define the extent of the parametric resonance region by adopting
numerical continuation and the harmonic balance (HB) technique. These methods should allow us to define
the actual extent of parametric resonant solutions, including bistable regions, which are often overlooked by
direct numerical simulations. A partial analysis of the dynamical behaviour of a similar system was already
illustrated in [25,26], where bistable regions were first detected exploiting the method of multiple scales
[30]. In the present study, different techniques are implemented, complementing the work done in [25,26].
Additionally, stable quasiperiodic motions are disclosed, and the dynamical integrity of coexisting solutions
is investigated.

The remaining part of the paper is organized as follows. In Sect. 2, the mechanical model is introduced. In
Sect. 3, direct numerical simulations, the shooting method, and the HB procedure are implemented to obtain
a general understanding of the system dynamics in correspondence with the onset of parametric resonances,
considering constant wave amplitudes. In Sect. 4, the region of existence of parametric resonances is identified
in the frequency–amplitude space, its robustness is studied, and coexisting quasiperiodic solutions are also
detected. In Sect. 5, the obtained results are qualitatively compared with a high fidelity numerical model of
the same mechanical system. Finally, in Sect. 6, concluding remarks are provided.

2 Mechanical model

The hydrodynamic model for the test case spar-buoy follows the validated model of the same spar-buoy from
[4,12,20,44]. The model captures the occurrence of parametric resonance by the coupled equations for heave
x3 and pitch x5,

FI,3(ẍ3) + FD,3 (ẋ5) + FR,3 (x3, x5, t) = FE,3 (t) ,

FI,5(ẍ5) + FD,5 (ẋ5) + FR,5 (x3, x5, t) = FE,5 (t) ,
(1)

where FI,i is the inertia, FR,i is the hydrostatic restoring force, FD,i is the hydrodynamic damping force, and
FE,i is the wave excitation force.
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Fig. 1 The excitation force coefficients (a) HE,3, (b) φE,3, (c) HE,5, and (d) φE,5. Frequency is normalized with respect to ω5

The inertial forces are given by the product of the inertia and acceleration:

FI,3 = (M + m3)ẍ3,

FI,5 = (I5 + m5)ẍ5,
(2)

where M is the cylinder mass, m3 is the hydrodynamic added mass in heave, I5 is the pitch moment of inertia,
and m5 is the hydrodynamic added moment of inertia in pitch. Out-of-diagonal elements of the added mass
matrix are neglected.

The hydrodynamic restoring force and moment terms have time-varying parameters, which enables the
existence of parametric and autoparametric resonance in the numerical model. In [12,20], the hydrodynamic
restoring force and moment are given by

FR,3 (x3, x5, t) = ρgAC

[
x3 − x25

LSC

2

]
, (3)

FR,5 (x3, x5, t) = ρgAC LD

[
GMx5 − 1

2
x3x5 + 1

2
η(t)x5

]
, (4)

where ρ is the water density, g is the gravitational constant, AC is the spar-buoy horizontal cross-sectional
area, LSC is the distance from the still water level to the spar-buoy centre of mass, LD is the spar-buoy draft,
GM is the spar-buoy metacentric height, and η(t) is the wave elevation.

Following [12,20], the hydrodynamic damping is represented as

FD,3 (ẋ3) = C3 ẋ3,

FD,5 (ẋ5) = C5 ẋ5,
(5)

where Ci are the damping coefficients identified using measured data from the free decay experiments in [44].
For an input wave with amplitude A, frequency ω and phase φ, the wave elevation is

η(t) = A sin (ωt + φ) . (6)

The excitation force is given by

FE,i (t) = HE,i (ω)A sin
(
ωt + φ + φE,i (ω)

)
, (7)

where HE,i (ω) and φE,i (ω) are the hydrodynamic excitation force coefficients for the amplitude gain and
phase shift, respectively, which are calculated using the open-source linear potential flow boundary element
method software Nemoh [2], and plotted in Fig. 1.

The values for the parameters used in the model are listed in Table 1 following the values provided in
[12,20,44] for the validated model of the same device.
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Table 1 Model parameter values used in the test case

Parameter Value

AC 1087 m2

ρ 1000 kg/m3

M 2.15×108 kg
LD 198.1 m
g 9.81 m/s2

m3 1.37 × 107 kg
GM 10.1 m
C3 1.19 × 106 kg/s
I5 1.12 × 1012 kgm
LSC 109.1 m
C5 7.54 × 109 kgm/s
m5 7.26 × 1011 kg

3 Preliminary analysis of the system dynamics

The system’s dynamics is described by the system of ordinary differential equations provided in Eq. (1). The
strongly nonlinear nature of the system makes it challenging to thoroughly study its potentially rich dynamics.
Various strategies can be adopted for this purpose. In the following, we illustrate the different outcomes that
various numerical techniques provide.

3.1 Direct numerical simulations

In ocean engineering, it is common to study the dynamics of a systembyperforming direct numerical integration
of the equations of motion. Typically, to reduce the effect of transient dynamics, the wave forcing signal is
introduced by a linear ramp [14]. In this way, the system, starting from the trivial equilibrium position, is
gradually excited. A drawback of this approach is that, for each set of parameter values, the system always
converges to the same attractor. If other attractors coexist with the identified one, they are overlooked.

We apply this method on the system under study, performing simulations for a fixed wave amplitude of 1 m
(A/GM = 0.0954), over a range of frequency covering both natural resonance frequencies of the system. We
then collect the maximal amplitude of the steady-state oscillations for each frequency, obtaining the frequency
response function (FRF) of the system. The result is illustrated in Fig. 2a and b.

From the Figure, we notice the detached branch existing for ω/(2ω5) ∈ (0.951, 1.036). This is a branch
of parametric resonances, which has a kind of V-shape, both in heave and in pitch. This parametric resonance,
which corresponds to a so-called parametric instability of the regular resonance, is due to the terms η(t)x5 and
1/2x3x5 in Eq. (4). Both terms contribute to generate an instability in pitch, similarly to a classical Mathieu’s
equation. η(t)x5 is properly a Mathieu term generating a parametric instability, while 1/2x3x5 generate a
so-called autoparametric instability. The contribution of 1/2x3x5 is much more important than that of η(t)x5
because, for ω ≈ ω3, x3 is much larger than η(t). The V-shape of the parametric resonance curve is due to the
quadratic terms x25 in Eq. (3) and 1/2x3x5 in Eq. (4). From this preliminary analysis, it seems that parametric
instabilities are limited to the frequency range ω/(2ω5) ∈ (0.951, 1.036) (for A = 1 m).

For ω ≈ ω5, although the system has only one natural frequency, the FRF exhibits two nearby peaks. The
reason for this shape is explained in the next Subsection.

3.2 Numerical frequency sweep

In order to identify potentially coexisting solutions and to correctly evaluate the extent of the region presenting
parametric resonances, we numerically simulate the dynamics of the system performing a so-called frequency
sweep. Starting from a certain frequency value, a numerical simulation of the system is computed; the compu-
tation is interrupted when the system converges to a periodic solution. Then, the frequency is slightly increased
(or decreased), and another numerical simulation is performed, utilizing as initial condition for the simulation
the final state of the previous simulation. No ramp is utilized on the forcing signal. If the frequency step is small
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Fig. 2 Frequency response in heave (a, c, e) and pitch (b, d, f) for A = 1 m (A/GM = 0.0954). a, bDirect numerical simulation
with ramp for forcing signal; c, d numerical frequency sweep; e, f shooting method. Solid line: stable solutions, dashed lines:
unstable solutions

enough, and if the total simulation time of each simulation is a multiple of the excitation period, the systemwill
interpret the transition from one simulation to the following one as a smooth change. Consequently, the system
will follow a branch of solutions as far as they are stable. Performing a sweep-up (increasing frequency) and
a sweep-down (decreasing frequency), some of the coexisting solutions can be found. Another advantage of
this approach is that each simulation starts from a condition already very close to its steady state (except when
jumps from one branch to another one occur); therefore, the simulation time can be significantly reduced.
This technique is very well-known and widely utilized in the nonlinear dynamics scientific community [29];
however, it is very rarely implemented in ocean engineering [21,31].

The results of the analysis are shown in Fig. 2c and d. In the Figures, blue arrows indicate the jumps from
one branch to the other one occurring during the sweep-up, while the red arrows refer to the jumps of the
sweep-down. Jumps occur either because the solutions of the branch become unstable, or because the branch
presents a fold. The Figures are almost identical to Fig. 2a and b; however, the branch of parametric resonance
solutions is wider. It exists for ω/(2ω5) ∈ (0.924, 1.064). With respect to the frequency band exhibiting
parametric resonance previously measured, this one is 62.8 % larger. Besides, the branch of regular solutions
exists also in regions where parametric resonances occur, which was not the case in Fig. 2a and b.

These results suggest that, for ω/(2ω5) ∈ (0.951, 1.037), the system experiences parametric resonances;
for ω/(2ω5) < 0.924 or ω/(2ω5) > 1.062 it exhibits regular oscillations, while for ω/(2ω5) ∈ (0.924, 0.951)
or ω/(2ω5) ∈ (1.037, 1.064) it can undergo either of the two dynamical behaviours, depending on its initial
conditions. Of course, these specific values are valid only for A = 1m. Nevertheless, considering the nonlinear
nature of the system, the existence of other, undiscovered stable solutions cannot be excluded.

3.3 Shooting method

In order to have a better insight into the parametric resonance, we tried to track the branch of periodic solutions
by the shootingmethod, combinedwith a pseudo-arclength continuation [29,33]. The shootingmethod consists
in identifying initial conditions of the system, such that after one period of excitation (or two periods, for
parametric resonances, which present a period double than the excitation) the system reaches again the initial



G. Habib et al.

state. This condition can be verified by direct numerical simulations, and, if it is satisfied, a periodic solution
is identified.

In a mathematical sense, it corresponds to satisfy the equation

x (T ; η) − η = 0, (8)

where η = x(0). Several approaches can be implemented for finding the correct initial conditions η. Assuming
that we have an initial guess η0 of the correct η value, we aim at identifying δη such that

x
(
T ; η0 + δη

) − (
η0 + δη

) = 0. (9)

Exploiting a Newton–Raphson approach for solving Eq. (9), η can be found iteratively. The shooting method
can also provide unstable periodic solutions, although in this case numerical issues might arise. A by-product
of the algorithm is the so-called monodromy matrix, whose eigenvalues can be used to study the stability of
the periodic solutions and identify the bifurcations occurring at the stability loss [33].

The shooting method is fully exploited only if it is combined with a continuation technique. In fact, the
solution obtained for a given set of system parameter values can be used to identify a proper initial guess
for a close-by set of parameter values. This approach enables one to obtain branches of periodic solutions
for a varying parameter and significantly speeds up the convergence of the algorithm. For our system, we
implemented the pseudo-arclength continuation, which enables to follow branches of periodic solutions also
if foldings occur. Details of the algorithm can be found in [33]. Also this technique is commonly implemented
in the nonlinear dynamics community, but it is rarely adopted in ocean engineering for solving hydrodynamics
problems.

In order to simplify the implementation of the pseudo-arclength continuation, it is convenient to have
analytical expressions of the equations ofmotion. Therefore,we perform a seventh-order polynomial regression
of the force coefficients, which are otherwise provided in the form of a Table as functions of ω.

Results of the procedure, for A = 1 m, are illustrated in Fig. 2e and f. Apart from the branches of stable
solutions, already identified by the frequency sweep, the analysis also provided some branches of unstable
solutions. Regarding regular solutions, the unstable peak of the heave resonance is clearly identified. The left
unstable part of the parametric resonance solution’s branch, which merges with the branch of regular solutions,
is also generated by the procedure. An analysis of the eigenvalues of themonodromymatrix, in correspondence
of the loss of stability, illustrates that one eigenvalue leaves the unit circle of the complex plane through -1.
This event corresponds to the occurrence of a period doubling bifurcation. In fact, the parametric resonance
solutions have a double period with respect to regular resonances. The fact that the periodic solutions of the
branch emerging from the bifurcation are unstable, and that they coexist with the stable regular solutions,
indicates that the bifurcation is subcritical.

The more complete picture of the branch of parametric resonance solutions provided by the shooting
continuation shows that its apparent V-shape is rather given by two peaks with a valley in between. This shape
resembles the FRF of systems with internal resonances, such as a single DoF system with an attached dynamic
vibration absorber. If the two subsystems (primary singleDoF system and dynamic vibration absorber) have the
same natural frequency, the frequency response presents aminimum in correspondence of the natural frequency
and two peaks at its sides [6]. The local minimum is due to an anti-resonance. In the system under study, the
modal interaction is related to an autoparametric resonance in the nonlinear regime. A similar scenario was
disclosed by Li et al. [26] for a similar system, by adopting the method of multiple scales.

We notice that also the pitch resonance has a similar trend. In fact, instead of presenting a single peak, it has
two peaks divided by a valley. These two close-by peaks are related to a 2:1 internal resonance generated by
the quadratic term x25 in the restoring force (Eq. (3)); in fact, quadratic terms generate asymmetry and double
harmonics according to the trigonometric relation cos(ω)2 = 1/2 + 1/2 cos(2ω). This constitutes a sort of
forcing term in heave, and, sinceω3 ≈ 2ω5, it causes a transfer of energy frompitch to heave. Figure 3 illustrates
the time series and the fast Fourier transform (FFT) of the steady-state response for ω = ω5 = 0.1096 rad/s.
The frequency content of the heave response confirms the internal resonance taking place. In fact, the heave
response presents a large frequency peak at the double of the excitation frequency, close to ω3 (Fig. 3b). An
analogous dynamical scenario was recently disclosed for microresonators, sharing a similar modal ratio [1].

For comparison, in Fig. 4 the time series response and the FFT of the steady-state solution for ω = ω3 =
0.2159 rad/s are represented. In this case, the parametric resonance triggers vibrations in pitch with a frequency
half of the excitation frequency, close to ω5.
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Fig. 3 a Time series of the system in heave and pitch for ω = ω5 = 0.1096 rad/s and amplitude equal to 1 m; b FFT of the
response
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Fig. 4 a Time series of the system in heave and pitch for ω = ω3 = 0.2159 rad/s and amplitude equal to 1 m; b FFT of the
response

Looking at the frequency response in Fig. 2e and f, we notice that the shooting method was unable to track
the right branch of unstable parametric resonance periodic solutions. While trying to follow that branch, the
continuation failed to converge, probably because of its strongly unstable character.

3.4 Harmonic balance method

In order to obtain an approximation of the right unstable branch of parametric resonance solutions, we applied
the harmonic balance technique. Differently from the methods utilized so far, the HB does not provide an exact
solution. It consists of approximating the steady-state solution of the system to a series of harmonic terms.
First, we decide to limit the analysis to harmonic terms of order ω and ω/2, which are the minimal terms
required for identifying parametric resonances. In practice, we approximate the solution of the system by

x3 = c31 cos(ωt) + s31 sin(ωt) + c3h cos

(
ωt

2

)
+ s3h sin

(
ωt

2

)
,

x5 = c51 cos(ωt) + s51 sin(ωt) + c5h cos

(
ωt

2

)
+ s5h sin

(
ωt

2

)
.

(10)

Higher and lower harmonic terms were neglected. Also constant terms, which exist because the system encom-
passes even-order nonlinearities, are omitted by the approximation. We substitute Eq. (10) and its time deriva-
tives into Eq. (1); then, we collect equal harmonic terms, reducing the system of ordinary differential equations
to an 8-dimensional nonlinear system of algebraic equations. Numerically solving this system with respect
to c31, s31, c51, s51, c3h, s3h, c5h and s5h provides an approximate of the steady-state solution of Eq. (1), for
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Fig. 5 Frequency response in heave (a, c) and pitch (b, d) for wave amplitude equal to 1 m. Computed with HB method
encompassing two harmonics (a, b) and three harmonics plus constant term (c, d). Thin red lines refer to results from the shooting
method, replotted for comparison. Solid line: stable solutions, dashed lines: unstable solutions

a given set of parameter values. A Newton–Raphson approach is used for this purpose. By coupling the HB
method to a pseudo-arclength continuation, we are able to follow branches of periodic solution for a varying
parameter, as we did with the shooting method. With respect to the shooting method, the HB is significantly
faster, since it does not require time integration, and it is able to track with the same efficiency stable and
unstable solutions. The stability analysis of each solution is performed by identifying if the real part of at least
one of the Floquet exponents is positive. For this purpose, Hill’s method is adopted [18], following the steps
outlined in [7,42], which, for the sake of brevity, are not reported here.

The results of the computation are illustrated in Fig. 5a and b (black lines). In the same Figures, the red
lines reproduce the result obtained by the shooting continuation for comparison. In this case, the procedure
tracked the whole branch of parametric resonance solutions, including the right unstable branch.

Referring to the response in correspondence of the pitch resonance (ω ≈ ω5), not surprisingly the HB
approximation completely overlooked the peak of the heave response. This occurs because the approximation
includes only the harmonic of excitation and its half, while the peak in heave, for ω ≈ ω5, has a dominant
frequency which is the double of the excitation frequency (Fig. 3b).

Comparing the black and red lines in Fig. 5a and b, we also notice that there is a non-negligible quantitative
difference between the two, concerning the parametric resonance branch. Nevertheless, despite the rough
approximation, the procedure was able to provide an informative picture about the parametric resonance and
its region of existence.

In order to improve the estimation and also attempting at obtaining the correct frequency response for the
pitch resonance, we include in the HB additional harmonic and constant terms as well. That is,

x3 = c30 + c31 cos(ωt) + s31 sin(ωt) + c3h cos

(
ωt

2

)
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Fig. 6 Contribution of the different harmonic components to the system response, as computed from the HB procedure. a–d and
e–h subplots refer to the results in heave and pitch, respectively. Solid line: stable solutions, dashed lines: unstable solutions

+s3h sin

(
ωt

2

)
+ c32 cos (2ωt) + s32 sin (2ωt) ,

x5 = c50 + c51 cos(ωt) + s51 sin(ωt) + c5h cos

(
ωt

2

)

+s5h sin

(
ωt

2

)
+ c52 cos (2ωt) + s52 sin (2ωt) . (11)

The system of algebraic equations generated by the HB procedure is now 14-dimensional. Results of the
computation are illustrated in Fig. 5c and d (black lines). In this case, the HB procedure was able to correctly
track the frequency response for ω ≈ ω5. Besides, the difference between the red and black lines is practically
negligible along almost all the considered range of excitation frequency.

The HB procedure requires to compute the various harmonic contributions of the steady-state solution,
which can then be used to obtain additional insight regarding the system dynamics. For the case under study,
they are depicted in Fig. 6. In particular, Fig. 6f confirms that the parametric resonance in pitch, for ω ≈ ω3,
has almost no harmonic component of order ωt , but mainly of order ωt/2 (Fig. 6g). Figure 6d shows that the
internal resonance for ω ≈ ω5 generates harmonics of order 2ωt in heave. Constant terms c30 and c50 are
present anytime there are large amplitude solutions (Fig. 6a and e).

The accuracy of the estimation and the rapidity of the procedure suggests that theHBmethod is a potentially
valid tool for rapidly performing a parametric analysis of the system dynamics.

4 Region of existence of parametric resonance solutions

With the objective of identifying the parametric resonances’ region of existence, we repeat the direct numerical
simulations performed for obtaining Fig. 2c and d over a wide range of wave amplitude. The results of the
analysis are illustrated in Fig. 7. Figure 7a and b depicts the stable branches of the heave and pitch responses,
respectively. The amplitude of oscillation increases almost linearly with the wave amplitude for both heave
and pitch. However, for wave amplitude larger than 2 m (A/GM = 0.191), the maximal heave and pitch
amplitudes remain constant. This kind of saturation of the amplitude is due to capsizing of the buoy, occurring
approximately for x3/GM > 2.5. In this event, which corresponds to a physical capsizing of the mechanical
system, the model fails, and simulations are interrupted. Clearly, no parametric resonance can be identified
after capsize occurs.
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Fig. 7 Response of the system in heave (a) and pitch (b) for various wave amplitudes and frequencies. c regions of existence
of parametric resonances: clear area: only regular solutions, black area: only parametric resonances, grey area: both types of
solutions coexisting; dashed red lines mark boundaries obtained by HB
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Fig. 8 Frequency response in heave (a) and pitch (b) for wave amplitude equal to 1.8 and 1.9 m (A/GM = 0.1716 and
A/GM = 0.1812). Results computed by the HB method encompassing three harmonics plus constant term. Solid line: stable
solutions, dashed lines: unstable solutions

Figure 7c illustrates the region of existence of parametric resonances in the (ω, A) space. According to the
numerical simulations performed, the system converges towards regular solutions in the clear area. Conversely,
in the black area the system experiences a parametric resonance. In the grey area the system can either display
a regular solution, or can undergo a parametric resonance, depending on the initial conditions. We notice that
the grey area in Fig. 7c has an extent equal to 68.8 % of the black area, which makes it particularly relevant
from an engineering perspective. The red lines in Fig. 7c indicate the boundary of the three regions obtained by
the HB method. The two methods provide results in almost perfect agreement regarding the boundary of the
black region, while the boundaries of the grey region present a slight mismatch, especially at high amplitude.
The mismatch is related to the increased relevance of harmonics neglected in the HB approach.

For A ≈ 2 m (A/GM = 0.191), the right boundary of the grey area has a non-smooth deviation. This
trend can be explained by analysing the frequency response function around those values.

Figure 8 illustrates that, for an amplitude between 1.8 and 1.9 m, the branch of parametric solutions
experiences a fold, which results in a non-smoothness in the continuation performed for increasing ω values
(curves obtained by the HB method). In fact, once the fold is reached, the system necessarily leaves the
branch it was following. Probably, the transient dynamics caused by the system leaving the branch makes it
reach conditions causing capsizing. Numerical results in Fig. 7 show that the change of trend occurs for wave
amplitude of 2 m, while Fig. 8 suggests that the fold appears for A between 1.8 and 1.9 m. The difference
between the two is probably related to the approximation of the HB solution.
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Fig. 9 Sections of the basins of attraction of the system’s steady-state solutions for ω/(2ω5) = 0.93 (a), 0.94 (b), 1.05 (c), and
1.06 (d), A = 1 m, x3(0) = ẋ3(0) = 0. Clear area: parametric resonance solution, brown area: regular solution, black area:
capsizing

4.1 Robustness of coexisting solutions

In the case of more coexisting stable solutions, the system converges towards one of the attractors, depend-
ing on its initial conditions. Since the system is 5-dimensional (including the phase of the excitation), it is
computationally very demanding to identify the basin of attraction of the system, even for a single parameter
configuration. We, therefore, limited the analysis to sections of it, for a fixed value of the wave amplitude
(A = 1 m) and for various frequencies of excitation. The result of the analysis is depicted in Fig. 9.

The Figure illustrates sections of the system’s basin of attractions for x3(0) = ẋ3(0) = 0. The force is
provided with no initial ramp. The brown area indicates initial conditions leading to regular solutions, while
the white area marks the basin of attraction of the parametric resonance solution. The system tends to converge
towards regular solutions for small initial pitch values (initial heave values are always zero for the computation).
Conversely, to trigger parametric resonances, one of the variables must be significantly different from zero.
This phenomenon is consistent with the fact that direct numerical simulations, performed with the initial ramp
on the wave amplitude, completely overlooked parametric resonances in the bistable ranges (Fig. 2a and b).

For A = 1m, the system is bistable forω/(2ω5) ∈ (0.924, 0.951) andω/(2ω5) ∈ (1.037, 1.064). Figure 9a
and b refers to the first interval; in the plots ω/(2ω5) = 0.93 and 0.94, respectively. While for ω/(2ω5) = 0.93
(Fig. 9a) the regular solution seems relatively robust, increasing the frequency ratio to 0.94 (Fig. 9b), the white
region gets much closer to the origin of the axis. These are two steps of the transition that goes from only
regular solutions for ω/(2ω5) < 0.924, where the white area would disappear, to only parametric resonances
for ω/(2ω5) > 0.951, where there would be no brown area at all. The black area, visible near the corners of
all the plots in Fig. 9, indicates initial conditions which caused the capsizing of the system. Referring to the
second interval with bistable solutions, Figs. 9c (ω/(2ω5) = 1.05) and 9d (ω/(2ω5) = 1.06) show how the
basin of attraction of the parametric resonance recedes as ω increases.
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Fig. 10 Probability of convergence towards a regular solution (red line) or experiencing a parametric resonance (blue line) for
A = 1 m and varying frequency

0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(a) (b)

Fig. 11 Frequency response in heave (a) and pitch (b) for wave amplitude equal to 0.5, 1, 2, and 4 m (A/GM = 0.0477, 0.0954,
0.1907, and 0.3814). Results computed by the HB method encompassing three harmonics plus constant term. Solid line: stable
solutions, dashed lines: unstable solutions

Figure 10 illustrates the probability that the system converges towards a regular solution, or that it expe-
riences a parametric resonance. The Figure was obtained by a Monte Carlo approach, i.e. for each frequency
value, 1000 simulations with different initial conditions were performed. The initial conditions had a uni-
form distribution ranging between: x3(0) ∈ (−10, 10) m, ẋ3(0) ∈ (−2, 2) m/s, x5(0) ∈ (−0.2, 0.2) rad
and ẋ5(0) ∈ (−0.02, 0.02) rad/s. The values indicated in Fig. 10 correspond to the so-called global integrity
measure (GIM) [36], which is the hyper-volume of the basin of attraction of a given solution. The trend of the
curves in the Figure shows that the mutual erosion of the basin of attraction is gradual, and the variation of the
global integrity measure is practically linear in the region of bistability.

4.2 Quasiperiodic motions

Figure 11 depicts the frequency response of the system for various values of the wave amplitude, from 0.5
to 4 m (obtained by the HB method). From the Figure, we can recognize that the left part of the branch of
parametric resonance solutions has always much smaller amplitude than the right part of the branch; both
regarding heave and pitch. For excessively high oscillation amplitudes, even small perturbations can make
the system undergo capsizing. Therefore, even if solutions are theoretically stable, their practical relevance is
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Fig. 12 a, b Frequency response of the system around the heave resonance for A = 4 m (A/ ¯GM = 0.3814); c,d phase portraits
of the steady-state solution for ω/(2ω5) = 0.955 and its FFT of the displacement in heave (e) and in pitch (f)

questionable. For large wave amplitudes, we also notice that some parts of the branches related to parametric
resonances become unstable even in the absence of folds. These instabilities are related to Neimark–Sacker
bifurcations, which generate quasiperiodic motions; quasiperiodic solutions cannot be captured by the HB
procedure adopted. Most of these instabilities occur for very large values of the response, where capsizing
often occurs; therefore, it is challenging to identify them even by numerical simulations. For the same reason,
they are probably practically irrelevant, and they exist in a phase space region where the validity of the model
is arguable.

One of these unstable branches exists for ω/(2ω5) ≈ 0.95 and A = 4 m where the oscillation amplitudes
are not very large. Therefore, with the help of numerical simulations, we are able to track these quasiperiodic
motions. A close-up of the FRF around the second resonant peak is illustrated in Fig. 12a and b. The red curve
in the Figures, obtained by direct numerical simulations, marks the maximal amplitude of the quasiperiodic
solutions. The rest of the curve was obtained by the HB method.

Figure 12c and d represents the phase portrait of the solution existing for ω/(2ω5) = 0.955. The depicted
curve seems to move on a torus, which confirms its quasiperiodic nature. The red lines in Fig. 12c and d are
stroboscopic Poincaré sections of the solution, obtained by picking one point for each excitation period. Their
closed shape further proves that the motion is quasiperiodic. In pitch (Fig. 12d), the red curve is broken into two
parts because of the doubled period of oscillation. Finally, Fig. 12e and f illustrates the FFT of the response,
highlighting the multiple frequency components of the motion.

The yellow curve in Fig. 11 shows that also in correspondence of the pitch resonance the frequency response
presents an instability. This can be better recognized in the enlargement of the first resonant peak provided in
Fig. 13a and b.

Also this instability is generated by a couple of Neimark–Sacker bifurcations, which, therefore, generate
quasiperiodic motions. The same analysis performed regarding the branch of quasiperiodic motions at heave
resonance is repeated for this case, around pitch resonance. The red curves in Fig. 13a and b, obtained by
direct numerical simulations, mark the maximal amplitude of the quasiperiodic solutions in that region. These
curves complete the FRF obtained by HB and represented in black. Figure 13c and d represents the phase
portrait of the solution existing for ω/(2ω5) = 0.4926. In heave (Fig. 13c), the torus makes a double loop in
one period because it is dominated by a frequency double than the excitation frequency. Poincaré sections (red
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Fig. 13 a, b Frequency response of the system around the pitch resonance for A = 4 m (A/ ¯GM = 0.3814); c, d phase portraits
of the steady-state solution for ω/(2ω5) = 0.4926 and its FFT of the displacement in heave e and in pitch f

lines) confirm the quasiperiodic nature of the solution. The frequency content of the solution can be observed
in Fig. 13e and f.

5 Validation of the observed phenomena against high fidelity numerical simulations

Although the model implemented was already validated in previous studies [44], in this Section we verify if the
most important findings of this research are confirmed by more sophisticated numerical models describing the
same physical system. For this purpose, we implement a more representative model of the system, based on the
explicit nonlinear Froude–Krylov (NLFK) force calculation: both the static and dynamic pressure fields of the
undisturbed incident wave are integrated over the instantaneous wetted surface of the floater. This approach,
available for both axisymmetric and prismatic floaters [16], has been validated against experimental tests in
[14], and has already been effectively used to investigate parametric resonance for a floating wave energy
converter in [15]. Moreover, in [13], this model has been applied to the same cylindrical floater considered in
this paper, highlighting parametric resonance regardless of the simple archetypal geometry. In this paper, in
order to ensure the most meaningful comparison, a 2-DoF NLFK model (heave and pitch) is considered, with
parameters and structure equal to the model in Sect. 2, apart from the nonlinear description of Froude–Krylov
forces.

We excite the system by a linear chirp waveform of constant amplitude (A = 1 m). First, we consider
increasing, then decreasing, frequencies. In this way, we can provide a situation similar to the frequency sweep
illustrated in Fig. 2c and d, except that the excitation frequency is continuously increased, without waiting for
the system to reach its steady state. The frequency ratio ranges from 0.8 to 1.2, which covers the whole bistable
region. The response of the system to the excitation is depicted in Fig. 14 for the two cases. Figure 14a and b
refers to the increasing frequency. We notice that pitch is suddenly excited for ω/(2ω5) ≈ 0.98, marking the
parametric resonances’ triggering. The system persists in its parametric resonance state untilω/(2ω5) = 1.142.

Looking now at the decreasing frequency case (Fig. 14c and d), we notice that parametric resonances are
triggered for a frequency ratio of 1.035. The system converges again towards regular solutions for ω/(2ω5) ≈
0.945. Since the system takes some time to settle on the new solution at each transition, it is not easy to mark
the transition frequency precisely. Nevertheless, the analysis confirms that a frequency range presenting both
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Fig. 14 Time series of the response of the model based on the explicit NLFK force calculation, forced by a linear chirp waveform
of increasing (a, b) and decreasing (c, d) frequency, with A = 1 m

stable solutions exists. Additionally, the envelopes of the time series confirm the double peak shape of the
frequency response in parametric resonance, both in heave and in pitch, as exhibited by the simplified model.

6 Conclusions

The dynamical behaviour of a pitch–heave spar-buoy was investigated. The floating body, having a heave–
pitch natural frequency ratio of 2:1, undergoes parametric resonances when the wave frequency is close to
the heave natural frequency. The obtained results showed that a bistable region exists where either regular
or parametric resonances can occur, and its extent is significant. This result is in contrast with numerical
observations relative to similar systems [15]. Conversely, it confirms recent analytical studies about analogous
mechanical models [25]. Interestingly, the overall dynamical scenario obtained closely resembles the internal
resonance of a nonlinear asymmetric microbeam resonator [1].

Furthermore, the performed analysis unveiled the existence of stable quasiperiodic motions. However, their
practical relevance for floating bodies is probably marginal.

In a more general framework, this study illustrated how relatively simple numerical or semi-analytical
techniques can be implemented to analyse these kinds of systems. Although this might sound obvious for most
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scientists dealing with nonlinear dynamics, they are rarely adopted in ocean engineering. The set of analytical
and numerical methods utilized in this paper partially complements those implemented in [25].

The results were validated qualitatively using a model based on the explicit nonlinear Froude–Krylov
force calculation. Future developments of this work should comprise a thorough analysis of all the dynamic
phenomena unveiled, utilizing this more accurate model. Besides, the effect of including other degrees of
freedom, such as roll and sway, should also be investigated.
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